Gradnja enostavnega
procesorja MIPS

Digitalna vezja

Miha Moskon

miha.moskon@fri.uni-lj.si

https://fri.uni-lj.si/en/about-faculty/employees/miha-moskon

mailto:miha.moskon@fri.uni-lj.si
https://fri.uni-lj.si/en/about-faculty/employees/miha-moskon

Procesor MIPS16

Lotili se bomo izvedbe enostavnega procesorja MIPS s 16-bitnimi ukazi
in 16-bitnimi pomnilniskimi besedami

MIPS (Microprocessor without Interlocked Pipelined Stages)
Druzina RISC (Reduced Instruction Set Computer)

Bolj znane 32- in 64-bitne izvedbe

Procesor MIPS16

Prilagoditev (poenostavitev) 32-bitne arhitekture na 16-bitno

lzvedba ukazov v eni urini periodi (single-cycle processor)

Ukazi ne gredo Cez stopnje, urina perioda mora biti prilagojena
najpocasnejsemu ukazu

Harvardov model: ukazni pomnilnik je loCen od podatkovnega; pisanje
v ukazni pomnilnik bo onemogoceno

Ukazi

Procesor bo podpiral sledecCe ukaze

add
sub
and
or
beq
bne
Iw
swW
addi

subi

Ukazi: 2 formata ukazov

| format: 2 registra in konstanta

op. code RS RT value/offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R format: 3 registri

op. code RS RT RD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| format ukazov

2 registra in konstanta (operand)

op. code RS RT (unsigned) value

1 0 1 0 X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addi SRT, SRS, value SRT € SRS + value
subi SRT, SRS, value SRT € SRS —value

| format ukazov

2 registra in konstanta (odmik)

op. code RS RT offset

1 0 0 0 X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Iw SRT, offset(SRS) SRT € MEM([SRS + offset]
sw SRT, offset(SRS) MEM([SRS + offset] € SRT

| format ukazov

2 registra in konstanta (odmik)

op. code RS RT offset

0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

beq SRT, SRS, offset if SRS == SRT:
SPC € SPC + offset

else:
SPC €< SPC+1

| format ukazov

2 registra in konstanta (odmik)

op. code RS RT offset

0 1 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bne SRT, SRS, offset if SRS = SRT:
SPC € SPC + offset

else:
SPC €< SPC+1

R format ukazov

3 registri

op. code RS RT RD

0 0 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

add SRD, SRS, SRT SRD €< SRS + SRT
sub SRD, SRS, SRT SRD €< SRS —SRT
and SRD, SRS, SRT SRD € SRS & SRT

or SRD, SRS, SRT SRD € SRS | SRT

Ukazi: Operacijske kode

14 13 12 11

15

op. code

ukaz
add
sub

and

or

beq

bne

lw

SW

addi

subi

Komponente procesorja

Ukazni pomnilnik (ROM)

Programski Stevec (Program Counter)

Kontrolna enota (Control Unit)

Registri

Aritmeticno-logi¢na enota (Arhithmetic logic unit)
Podatkovni pomnilnik (RAM)

Ostalo: multiplekseriji, logi¢na vrata, dodaten sestevalnik (za skoke)...

Ukazni pomnilnik (ROM 256 x 16)

t] Fom 2896 %16
Vhod: : }’ﬂ"ﬁ

ll
e Address (8 bit)

lzhod:
e Data (16 bit)

ol ol O B B B e
= 1= Iz 1= 1= 1z [o [[& [» [+ Ju [u - [o

Podatkovni pomnilnik (RAM 64k x 16)

RAM B4k 16

T° 0
- [AEE538
M3 [T SaatTe]
UTpdt enabple
T T
- C
A3 U0

Al AlZ
z z
Al A2

Vhodi:

e Address (16 bit)
Store (Write Enable)
Load (Output Enable)

* Clock (pisanje na pozitivno fronto ure) o ~,

* Input (DATA _in, 16 bit) g LK XE
A3 A2

= Al Al =

Izhodi _ j:-: :.z :

* Output (DATA_OUt, 16 bit) s B3 a1z
A3 A2

11 _|'3|‘1I3 ,|'l‘|‘1|2 11

Dodatno et A,
A3 A2

Asynchronous read: Yes == —..

15 15
R R

Polje registrov (8 registrov)

Vhodi:

« READ_ADDR_1, READ_ADDR_2 (naslov za branje, 3 bit)
WE (1 bit)

WRITE_ADDR (naslov za pisanje, 3 bit)

WRITE_DATA (podatki za pisanje

e CLK

e RST

Izhodi:
« READ DATA 1, READ DATA_2 (prebrani podatki, 16 bit)
e R1...R7 (debug izhodi, 16 bit)

e READ_ADDR_1 READ_DATA_1 bm
- READ_ADDR_2 READ_DATA 2 b=
- E Rl
=) \WRITE_ADDR R2 b=
o RITE_DATA R
- LK R4
- RST RE

RE

RT b=

| registers |

Polje registrov

= READ_ADDR_1 READ_DATA 1 b=
= READ_ADDR_2 READ_DATA 2 b=
- WE R
- \{RITE_ADDR R =
o VRITE_DIATA R =
- LK R4 b
- FET RE =

RE

RT b=

.

/

MUK

READ_ADDR_1[=

/=

1c_PREAD_DATA_1

MUK

i

"

READ_ADDR_ 2[5 >

WRITE_ADDR|

REGO
=D Q
[] 1 £
R
1
MT—C © xs PRI
R
REG2
D a %16 >R2
R
REG3
B s DR3
R
REG4
CIE) {ic R4
R
REGS
Ca s RS
R
REG6
Ca {1z DRe
R
REG7
T o {c DR7
R

WRITE_DATAL x16 >

CLK 1 >

RSTLx1 >

6 PREAD_DATA_2

Polje registrov (8 registrov)

Vhodi:

« READ_ADDR_1, READ_ADDR_2 (naslov za branje, 3 bit)
WE (1 bit)

WRITE_ADDR (naslov za pisanje, 3 bit)

WRITE_DATA (podatki za pisanje

e CLK

e RST

Izhodi:
« READ DATA 1, READ DATA_2 (prebrani podatki, 16 bit)
e R1...R7 (debug izhodi, 16 bit)

e READ_ADDR_1 READ_DATA_1 bm
- READ_ADDR_2 READ_DATA 2 b=
- E Rl
=) \WRITE_ADDR R2 b=
o RITE_DATA R
- LK R4
- RST RE

RE

RT b=

| registers |

Aritmeticno logicna enota T =
Vhodi:

e operandl (16 bit)
 operand2 (16 bit) ==

* func (2 bit): g oo
- 00— ADD | - e
* 01-SUB 1 == l_ —
. 10 3 AN D | ! I /U,X) %16 RESULT
+ 11-0OR
>
IZhOdi: FuNc =

* result (16 bit)
 zero (1 bit)

Kontrolha enota o

BHE
ALOP_|
Ly

=1

VhOd: FUNG
* Instr (16 bit) .

WAL
Izhodi:

* ALOP, BEQ, BNE, ALOP I, LW, SW (ukaz / tip ukaza, 1 bit)
* FUNC (AL funkcija, 2 bit)

* RS, RT, RD (naslovi registrov, 3 biti)

* VAL (value/offset, 5 bitov)

Kontrolna enota

-1 Instr

Instr]

FLOP [

m
=
I

T
5
TTTTIT

115

{15)

I(14)

Y

I(14)

7

113

v|

(12)

(11}

ADD, SUB, AND, OR

v,

El JBEQ

{: >BNE

r ™y
op_ode | BRANE H——t
I —4
—
R | J
i ADDI, SUBI
1 ™
{ ./
BT
(12)
111}
L'w
D, D
S
B, [Dsw
anth_op
[z _DFUNC
{:= DRs
: w3 >RT
RD
= {:= >RD
walua

: %5 FVAL

{ ?ALOP arthemnbic-logic operation (R formal

El >ALDP_I arithemtic-logic operation (immediate)

Programski stevec

8 bitni stevec

Delovanje:
e PC < PC + offset if branch else PC + 1

o1 I ¢ out

biranch offset

branch condition

PC

o aQ
WWE

b

WWE
WRITE_ADDR
WRITE_DATA
CLE

RST

Povezovanje — registri

« READ_ADDR_1 < control RS
« READ_ADDR_2 < control RT

 WE < control ALOP or control ALOP_| or control LW
 WRITE_ADDR < control RD if (control_ALOP = 1) else control_RT
 WRITE_DATA < RAM_output if (control LW = 1) else ALU_results

* CLK € CLK
* RST € RST

READ_ADDR_1 READ_DATA_I
READ_ADDR_Z READ_DATA_Z

R
Rz
R3
R4
Ra
RA
RT

OP1 ZERD
op2 RESLILT
FLIMC

Povezovanje — ALE

operandl < registers READ_DATA_1 (register RS)

operand2 < registers READ_DATA_2 if (control_ALOP or control BEQ or control BNE) else
extended_val

» extended val € 00...00 & control VAL

FUNC < 00 if (control_LW or control_SW) else 01 if (control_BEQ or control_BNE) else
control_FUNC

« 00=ADD

« 01=SUB

Povezovanje — RAM

» Address €< ALU result

* Store < control_SW

* Load < control LW

* Clock € Clock

* Input < registers READ DATA_2 (prvi register je za naslov)

RAM G41Kx 16

1]]
A 55535

M3 IO Snatls]

1
= C
Al A2
A13 A12
A13 A1
A3 A1z
A1 A2
A1 A1z
Al A1z
Al A2
A1 A2
Al A2
Al A2
Al A2
Al A2
Al A2

A3

Al

fFEFTFEE et e T |1

A3

Al

3 3 0 S Gl G O Gl Gl N

Povezovanje — ROM

 Address € PC

ROM 25616

lr el lelerle e e e le e e =)= o]
== Iz 1lz1z1z 0 Ju |- o [|+ Ju [~ |- [

Povezovanje — PC

PC

/

o ap

WE ¢ 1 wranch st

__E
-
=

D < izhod PC sestevalnika
Clock < Clock
Reset € Reset

YWE
L [

Povezovanje — PC sestevalnik
Inputl €< PC S— [+ — <} l !

hiranch condition

Input2 € 0x01 if (branch_condition = 0) else branch_offset

branch_condition € (control_BEQ and ALU_zero) or (control_BNE and not ALU_zero)

branch_offset < extended_sign(control_val)

elotna izvedba procesorja

branch condition ZERO and BEQ

' ¥

RS
not ZERD and BNE o R0
oP? RESULT
FUNG
ADDR
ALU_FUNG RAW 64K x 16
]
U_FUNC = ADD If (LW or S else SUB I (BINE or BES) elss FUNG t1 O
OP2= RT if (ALOP of BEQ or BNE Jelse VAL 3 i enaplel
2 (Dutpuf enable]
i DATA_out
biract L .
Jsubtraction ey 1
oatain LI 2
Mate A2
o addition € pw
Mlars B
PC R ALOP or BEQ or BNE :A‘-“ sy
Memory address i extend VAL =BE a2
<] 1]
ROM 25616 e A2
| 1]
u }Al - BEQ or BNE gk 2ft
55 structign B n
branch offset H [ALOP d| LW OR 9 e m
o AR Az
A oee {\ 3B 2zt
branch conditian A BNE ¥l pos e
a1 ALOP_| [ty L o A
Bl L A Az
4
CLK . o B 2zl
A s 1)
RST RST| N3 FUNG FUNG B L A] Wiite_dlata = RAM_outir LWy else ALLI_RESULT
Ai' RS e KNP A2
: 0
A1 RT MU WRITE_DATA
CLK = RD -
A1 VAL
A1 L
W ALOP
i
1]
A Uy WRITE_ADDR = RD IfALOP else RT
nE -
.
ke
-
ke
RS alRS)
RT READ_ADDR_1 READ_DATA_1
READ_ADDR_2 READ_DATA_2
S e RI
] -~ 4(RT)
b iRITE_2DDR RI =
WE_REG=ALOP or ALOP_| or LI WRITE. DATA Rl
LK Ri =
RaT RS =
WRITE_DATA 6 b
7

RET

CLK
CLk

Celotna izvedba procesorja

Glej https://github.com/mmoskon/MIPS16

https://github.com/mmoskon/MIPS16

	Slide 1: Gradnja enostavnega procesorja MIPS Digitalna vezja
	Slide 2: Procesor MIPS16
	Slide 3: Procesor MIPS16
	Slide 10: Ukazi
	Slide 14: Ukazi: 2 formata ukazov
	Slide 15: I format ukazov
	Slide 16: I format ukazov
	Slide 17: I format ukazov
	Slide 18: I format ukazov
	Slide 19: R format ukazov
	Slide 20: Ukazi: Operacijske kode
	Slide 21: Komponente procesorja
	Slide 22: Ukazni pomnilnik (ROM 256 x 16)
	Slide 23: Podatkovni pomnilnik (RAM 64k x 16)
	Slide 24: Polje registrov (8 registrov)
	Slide 25: Polje registrov
	Slide 26: Polje registrov (8 registrov)
	Slide 27: Aritmetično logična enota
	Slide 28: Kontrolna enota
	Slide 29: Kontrolna enota
	Slide 30: Programski števec
	Slide 31: Povezovanje – registri
	Slide 32: Povezovanje – ALE
	Slide 33: Povezovanje – RAM
	Slide 34: Povezovanje – ROM
	Slide 35: Povezovanje – PC
	Slide 36: Povezovanje – PC seštevalnik
	Slide 37: Celotna izvedba procesorja
	Slide 38: Celotna izvedba procesorja

