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Procesor MIPS16

Lotili se bomo izvedbe enostavnega procesorja MIPS s 16-bitnimi ukazi
in 16-bitnimi pomnilniskimi besedami

MIPS (Microprocessor without Interlocked Pipelined Stages)
Druzina RISC (Reduced Instruction Set Computer)

Bolj znane 32- in 64-bitne izvedbe



Procesor MIPS16

Prilagoditev (poenostavitev) 32-bitne arhitekture na 16-bitno

lzvedba ukazov v eni urini periodi (single-cycle processor)

Ukazi ne gredo Cez stopnje, urina perioda mora biti prilagojena
najpocasnejsemu ukazu

Harvardov model: ukazni pomnilnik je loCen od podatkovnega; pisanje
v ukazni pomnilnik bo onemogoceno



Ukazi

Procesor bo podpiral sledecCe ukaze
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Ukazi: 2 formata ukazov

| format: 2 registra in konstanta

op. code RS RT value/offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R format: 3 registri

op. code RS RT RD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



| format ukazov

2 registra in konstanta (operand)

op. code RS RT (unsigned) value

1 0 1 0 X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addi SRT, SRS, value SRT € SRS + value
subi SRT, SRS, value SRT € SRS —value



| format ukazov

2 registra in konstanta (odmik)

op. code RS RT offset

1 0 0 0 X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Iw SRT, offset(SRS) SRT € MEM([SRS + offset]
sw SRT, offset(SRS) MEM([SRS + offset] € SRT



| format ukazov

2 registra in konstanta (odmik)

op. code RS RT offset

0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

beq SRT, SRS, offset if SRS == SRT:
SPC € SPC + offset

else:
SPC €< SPC+1



| format ukazov

2 registra in konstanta (odmik)

op. code RS RT offset

0 1 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bne SRT, SRS, offset if SRS = SRT:
SPC € SPC + offset

else:
SPC €< SPC+1



R format ukazov

3 registri

op. code RS RT RD

0 0 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

add SRD, SRS, SRT SRD €< SRS + SRT
sub SRD, SRS, SRT SRD €< SRS —SRT
and SRD, SRS, SRT SRD € SRS & SRT

or SRD, SRS, SRT SRD € SRS | SRT



Ukazi: Operacijske kode
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Komponente procesorja

Ukazni pomnilnik (ROM)

Programski Stevec (Program Counter)

Kontrolna enota (Control Unit)

Registri

Aritmeticno-logi¢na enota (Arhithmetic logic unit)
Podatkovni pomnilnik (RAM)

Ostalo: multiplekseriji, logi¢na vrata, dodaten sestevalnik (za skoke)...



Ukazni pomnilnik (ROM 256 x 16)
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Podatkovni pomnilnik (RAM 64k x 16)

RAM B4k 16
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Vhodi:

e Address (16 bit)
Store (Write Enable)
Load (Output Enable)

* Clock (pisanje na pozitivno fronto ure) o ~,

* Input (DATA _in, 16 bit) g LK XE
A3 A2
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* Output (DATA_OUt, 16 bit) s B3 a1z
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Polje registrov (8 registrov)

Vhodi:

« READ_ADDR_1, READ_ADDR_2 (naslov za branje, 3 bit)
WE (1 bit)

WRITE_ADDR (naslov za pisanje, 3 bit)

WRITE_DATA (podatki za pisanje

e CLK

e RST

Izhodi:
« READ DATA 1, READ DATA_2 (prebrani podatki, 16 bit)
e R1...R7 (debug izhodi, 16 bit)

e READ_ADDR_1  READ_DATA_1 bm
- READ_ADDR_2  READ_DATA 2 b=
- E Rl
=) \WRITE_ADDR R2 b=
o RITE_DATA R
- LK R4
- RST RE

RE

RT b=

| registers |



Polje registrov
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Polje registrov (8 registrov)

Vhodi:

« READ_ADDR_1, READ_ADDR_2 (naslov za branje, 3 bit)
WE (1 bit)

WRITE_ADDR (naslov za pisanje, 3 bit)

WRITE_DATA (podatki za pisanje

e CLK

e RST

Izhodi:
« READ DATA 1, READ DATA_2 (prebrani podatki, 16 bit)
e R1...R7 (debug izhodi, 16 bit)

e READ_ADDR_1  READ_DATA_1 bm
- READ_ADDR_2  READ_DATA 2 b=
- E Rl
=) \WRITE_ADDR R2 b=
o RITE_DATA R
- LK R4
- RST RE
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| registers |



Aritmeticno logicna enota T =
Vhodi:

e operandl (16 bit)
 operand2 (16 bit) ==

* func (2 bit): g oo
- 00— ADD | - e
* 01-SUB 1 == l_ —
. 10 3 AN D | ! I /U,X) %16 RESULT
+ 11-0OR
>
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* result (16 bit)
 zero (1 bit)



Kontrolha enota o
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VhOd: FUNG
* Instr (16 bit) .

WAL
Izhodi:

* ALOP, BEQ, BNE, ALOP I, LW, SW (ukaz / tip ukaza, 1 bit)
* FUNC (AL funkcija, 2 bit)

* RS, RT, RD (naslovi registrov, 3 biti)

* VAL (value/offset, 5 bitov)



Kontrolna enota
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{ ?ALOP arthemnbic-logic operation (R formal

El >ALDP_I arithemtic-logic operation (immediate)



Programski stevec

8 bitni stevec

Delovanje:
e PC < PC + offset if branch else PC + 1

o1 I ¢ out

biranch offset

branch condition

PC

o aQ
WWE

b




WWE
WRITE_ADDR
WRITE_DATA
CLE

RST

Povezovanje — registri

« READ_ADDR_1 < control RS
« READ_ADDR_2 < control RT

 WE < control ALOP or control ALOP_| or control LW
 WRITE_ADDR < control RD if (control_ALOP = 1) else control_RT
 WRITE_DATA < RAM_output if (control LW = 1) else ALU_results

* CLK € CLK
* RST € RST

READ_ADDR_1  READ_DATA_I
READ_ADDR_Z READ_DATA_Z

R
Rz
R3
R4
Ra
RA
RT




OP1 ZERD
op2 RESLILT
FLIMC

Povezovanje — ALE

operandl < registers READ_DATA_1 (register RS)

operand2 < registers READ_DATA_2 if (control_ALOP or control BEQ or control BNE) else
extended_val

» extended val € 00...00 & control VAL

FUNC < 00 if (control_LW or control_SW) else 01 if (control_BEQ or control_BNE) else
control_FUNC

« 00=ADD

« 01=SUB



Povezovanje — RAM

» Address €< ALU result

* Store < control_SW

* Load < control LW

* Clock € Clock

* Input < registers READ DATA_2 (prvi register je za naslov)

RAM G41Kx 16

1] ]
A 55535

M3 IO Snatls]

1
= C
Al A2
A13 A12
A13 A1
A3 A1z
A1 A2
A1 A1z
Al A1z
Al A2
A1 A2
Al A2
Al A2
Al A2
Al A2
Al A2

A3

Al

fFEFTFEE et e T |1

A3

Al

3 3 0 S Gl G O Gl Gl N




Povezovanje — ROM

 Address € PC

ROM 25616
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Povezovanje — PC

PC

/

o ap

WE ¢ 1 wranch st
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D < izhod PC sestevalnika
Clock < Clock
Reset € Reset

YWE
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Povezovanje — PC sestevalnik
Inputl €< PC S— [+ — <} l !

hiranch condition

Input2 € 0x01 if (branch_condition = 0) else branch_offset

branch_condition € (control_BEQ and ALU_zero) or (control_BNE and not ALU_zero)

branch_offset < extended_sign(control_val)



elotna izvedba procesorja

branch condition ZERO and BEQ
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Celotna izvedba procesorja

Glej https://github.com/mmoskon/MIPS16
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