Computational topology
Homework 1 (due: November 3rd 2024)

Each problem is worth a certain amount of points. Some problems are theoretical, others
require you also submit the code (that conforms to the requirements given in the problem
description). You may choose which problems to solve, 15 points is equal to 100%.

You have to submit your solutions before the deadline as one .zip file to the appropriate
mailbox at https://ucilnica.fri.uni-1j.si/course/view.php?id=111 (near the top of
the page).

This .zip file should contain:

1. aNameSurname.pdf file written in IATEX and containing the solutions to the theoretical
problems you have chosen as well as solutions and explanations for the programming
problems (also make sure you sign your name on the top of the first page),

2. .jl files containing the code (one for each of the programming problems you have cho-
sen).

1 Theoretical problems

1. (3 points) Exploring different metrics.

View elements of R? as two-component column vectors, e.g. 0 = [0, O]T, X = [xl,xz]T and
y = [v1,2]". We define the metrics a,,7: RZxR?> > R,

0 ifx=y,
IIx|| + |ly]| otherwise,

a(x,y) ={

[ Ik=yllif iy =y,
B(xy) —{ IIx|| + |ly]] otherwise,

_ |y2—x2| ifx1=y1,
7(”)‘{ ol + 191 — x4 9ol ifx1 % 1.

(a) Determine the distances between the vectors [1,2]7, [2,4]" and [2,-1]" in all three
metrics.

(b) Draw the open balls B(0,1), B([0,1]",2) and B([1,2]",1+V5) in the metric a. Careful,
the centre of the ball is always contained in it! Why?

(c) Draw the open balls B(0,1), B([0,1]7,2) and B([2,2]", V2) in the metric f.
(d) Draw the open balls B(0,1), B([0,2]7,3) and B([1,-1]T,2) in the metric y.

This might help:

«a is called the postman metric because the distance from the postman P(xq,x;) to the customer
C(v1,v,) is obtained by adding the (standard Euclidean) distance from the postman to the post
office O(0,0) and the (standard Euclidean) distance from the post office to the customer.

With the radial metric B, trips along the lines through origin are shorter than trips in other direc-
tions (if the two trips have the same length in the standard Euclidean metric).

The river metric (or the French railroad metric) simulates a sistem where you can move along the
vertical lines directly, but you can only move in the horizontal direction along the x-axis. So, if



you wish to move from one vertical line to another, you have to first travel from the starting point
in the vertical direction until you reach the x-axis, then move along it and finally travel in the
vertical direction to the second point.

. (1 point) Discrete metric.

The discrete metric on a space X is defined as d: X x X —» R,

0 x=y,
1 otherwise.

d(x,y)={

(a) Let X =IN. Recall that B(xy, r) denotes the open ball with centre x, and radius r and
B(xg,r) denotes the closed ball with centre x; and radius r. Describe the sets B(1, %),

B(2,1), B(3,%) and B(4,1).

(b) Given three pairwise distinct integers a,b and ¢, when is the triangle with vertices
at a, b and c equilateral? Why?

. (2 points) Homeomorphic spaces.

Let X, =S"!x[0,1]c R"™! and Y,, = {(x{,...,x,) e R"; 1 < x%+...+x,% < 4}. Draw X,, and
Y, for n =1 and n = 2. Prove that X,, and Y,, are homeomorphic. (Hint: Prove it for n =2
first, then generalize ton > 1.)

2 Programming problems

. (3 points) Deciding connectivity
Let G be a simple graph with n vertices and m edges.

Write a simple algorithm that returns the connected components of the graph. You can
use either breadth-first search or a depth-first search to traverse the graph.

Your file graphcomponents. j1 should contain a function findcomponents(V, E) that
returns a list [C1,C2, . ..,Ck] of all components. Each component Ci is a list of vertices
[vl,v2,...,vk].

The input will consist of

(a) alistV = [1,2,..., n] of nvertices and

(b) alist of m 2-tuplesE = [(v1,v2),...] that represent the m edges.

You may want to pre-process the data into a more suitable data structure to speed up the
algorithm.

Sample inputs:

[1,2,3,4,5,6,7,8]
[(1,2),(2,3),(1,3),(4,5),(5,6),(5,7),(6,7),(7,8)]

[1,2,3,4,5]
[(1,2),(1,3),(1,4),(1,5)]

Corresponding outputs:

Vv
E
Vv
E

[r1, 2, 31, [4, 5, 6, 7, 8]]
({1, 2, 3, 4, 511



Run these test cases to determine if your program works correctly (work out the final
correct output on your own). Then put together two more test cases and include them in
your report (inputs and outputs at the least, images would be nice).

. (3 points) Shelling disks

Let P be a simple closed polygon in the plane. A polygon is a plane figure that is bounded
by a finite chain of straight line segments closing in a loop to form a closed polygonal
chain. These segments are called its edges or sides, and the points where two edges
meet are the polygon’s vertices or corners. A polygon is simple if it does not have self-
intersections.

We triangulate P, possibly adding vertices in the interior. The input will consist of a list
T of triangles, for example:

T=1[(1,2,6), (1,5,6), (2,3,7), (2,6,7), (3,4,8), (3,7,8), (5,6,9),
(6,7,11), (6,9,10), (6,10,11), (7,8,12), (7,11,12), (9,10,13),
(10,13,14), (10,11,15), (10,14,15), (11,12,15), (12,15,16)]

A shelling is a sequence of all triangles of P, such that any initial sequence is homeomor-
phic to a closed disk. Find an algorithm that produces this sequence.

13 14 15 16 13 14 15 16
211 17
3 15|16
9 10 11 12 9 10 11 12
4 |7 14
) 8 13
5 6 7 8 5 6 7 8
6 9 11
18 10 12

Your file shelling. j1 should contain a function shelling(T) that outputs the list of tri-
angles sorted in the correct order. Of course, a given polygon can have several different
shelling sequences. You only need to find one. You should build the sequence incremen-
tally. Think about the conditions that allow you to add a triangle to your sequence and
the conditions that prevent you from doing so. Explain them in your report.

Run your problem on the example given above and then check that it produces the cor-
rect output. Then make up one more example of your own and do the same for that one.
Include your example in the report (input, output and an image with the order of the
triangles clearly marked).

. (3 points) Jordan curve theorem

A simple closed curve in the plane is a connected curve with no self-intersections. We
will consider a special case of a finite chain of straight line segments closing in a loop to
form a simple closed polygonal curve.

The Jordan Curve Theorem states that every simple closed curve in IR?> decomposes R?
into two components, the bounded inside and the unbounded outside.



Your file jordan. j1 should contain a function insideQ(P, T), that returns true if the
point T lies inside the polygonal curve P and false otherwise. To determine this, count
the number of intersections of an infinite ray starting at T with the segments of the curve
P.

The curve P is given as a an 2 x n array of spatial vectors of the vertices:

P =1[x1, x2, ..., xn; y1, y2, ..., yn].

Any two consecutive vertices are connected by a line segment and the first vertex is
connected to the last one to close the curve. The point T is also given as its spatial vector
T = [x0; yO].

Sample input:

T =1[2.33; 0.66]

[0.02 0.98 2.10 3.11 4.34 4.56 2.95 2.90 1.89;

0.10 0.05 1.03 -1.23 -0.35 2.21 3.12 0.03 2.22]

Test your algorithm on this example to ensure the output is true. Then come up with
two more examples on your own. Include the inputs, the outputs and the images in your
report, as well as an explanation of how your algorithm works. It should be clear from
your explanation how you test whether the segment and the ray intersect.

P



